/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Test Spy Revisited
Unit Testing Strategies

/v

AARHUS UNIVERSITET

« Some strategies can be Unit Tested
— My ‘ManaProductionStrategy’ does not depend upon any

HotStone abstraction

public class OneManaPerRoundStrategy implements ManaProductionStrategy {

K DEErnaKk L

public int getManaCountForTurn({int turnCount) {

{(turnCount / 2) +1;
return mana = 7 ? 7

h
b

« S0, | can unit test it:
in isolation from other
objects...

int mana =

: mana;

CS@AU

EUD'L:I'.C void shouldvalidateOneHanaRouncEtr‘a‘teqv(} {

Problem Statement

ManaProductionStrategy strategy = new OneManaPerRoundStrategy();

3

T T e ——————————————————
assertThat(strategy.getManaCountForTurn(twmCount: 1), is(value: 1));
assertThat(strategy.getManaCountForTurn(tumCount: 2), is(value: 2});
assertThat(strategy.getManaCountForTurn(twmCount: 3), is(value: 2));
assertThat(strategy.getManaCountForTurn(twmCount: 4), is(value: 3));
assertThat(strategy.getManaCountForTurn(twmCount: 8), is(value: 4));
assertThat(strategy.getManaCountForTurn(twmCount: 11), is(value: 6));
assertThat(strategy.getManaCountForTurn(twmCount: 13), is(value: 7)) ;
assertThat(strategy.getManaCountForTurn(twmCount: 14), is(value: 7));
assertThat(strategy.getManaCountForTurn(twmCount: 87), is(value: 7));

Henrik Baerbak Christensen

/v Problem Statement

AARHUS UNIVERSITET

« GammaStone was a problem — no Unit Testing possible
of the Hero Power Strategy
— It modifies the game object ala reducing health of hero by two...
... which of course require us to have a game object in place
« Ala an integration test case like
— GIVEN a GammaStone Game
— WHEN | ask Thai Hero (Findus) to ‘use your power’
— THEN game.getHero().getHealth() is reduced by 2

 Integration test because
— Both Game and Hero Power Strategy (and Hero?) involved...

/v Analysis

AARHUS UNIVERSITET

« Seen from the perspective of the hero power strategy
— The usePower() method mutates a Depended Upon Unit (DOU)

« Spies serve commands (mutators) by the UUT

1: setup
_—
Ak 2-execute 3: command
JUnit test UuT DOU
|__/'
4: validate >
T What was sent to the DOU?

« Spies are recorders of interaction
— So, JUnit test can later query the spy about “what happened?”

/v

AARHUS UNIVERSITET

Analysis

A Double/Spy is a replacement of the original DOU
— Which requires that the DOU is defined by an interface/role

 Now our private interface for Game allows us to do

unit testing! Replace MutableGame by a spy

usePower

1: setup
_—

Ir’_'“'.

JUnit test

2.execute
—F

_J

4: validate

T

CS@AU

Henrik Baerbak Christensen

UuT

3 changeHealth

—F,

MutableGame

DOU

>

Record the call

/v My Code

AARHUS UNIVERSITET
* A Unit testing of Thai Chef, by using a Spy

@Test Henrik Beerbak @ coffeelake.small22 <hbe@es.au.dk=
public void shouldDealTwoDamageToOpponentHeroWhenThaiChefUsePower() {
'/ Given a S5PY on MutableGame
SpyMutableGame spy = new SpyMutableGame();
'/ Given a Thai+Danish chef Hero building strategy
HeroBuildingStrategy heroBuildingStrategy = new ThaiDanishChefHeroBuildingStrategy();

F s r r r Ty oy i~ i i -l o T o Th b
59 7 bl T] C5n 3 hiT T
¢ FIVEeEn a {fnai n_.u.E'_" VCLNUU S PPLUY S [

Hero thaiHero = heroBuildingStrategy.createHero(PlLayer.FINDUS);

Frowy ' } =)
/ Whnen {hal chey execuTes 1T5 power

thaiHero.getEffect().executeEffect(spy, @ /* no */);

%]
=]
m

f Thon anr MoafFahd olCom - —_ ol honT+h A€ Poddorcorn b -
rnen owr AuTapLewdame 15 Told To redguce nedlTh oy reddersen oy TWo

assertThat(spy.lastCall, is(value: "deltaHeroHealth(PEDDERSEN,-2)"));

CS@AU Henrik Baerbak Christensen 6

ot My Spy

AARHUS UNIVERSITET
* |s a simple ‘record last method call’

class SpyMutableGame implements InternalMutableGame {

public S5tring lastCall = "none"; 5 usages

ddverride Henrik Baerbak @ coffeelake.small22 <hboc@cs.au.dk>

public void deltaHeroHealth(Player who, int value) {
lastCall = "deltaMeroHealth(" + who + "," + valve + ")";

}

CS@AU Henrik Baerbak Christensen 7

eV Discussion

AARHUS UNIVERSITET

* Note how all these techniqgues combine to make it
possible

— Interface Segregation Principle + Role/Private interface

« Game object can play both an “outward looking” and “inward looking”
role

— Game interface: outward looking what outsiders can do
— MutableGame: inward looing what strategies can do
— Program to an interface

« MutableGame is an interface, and can be played by another object
than the real implementation itself

— Test Spy

» The spy plays the MutableGame role, to test the hero power
algorithm

eV Discussion

AARHUS UNIVERSITET
« Unit Testing changes the GWT ‘mind set’

« From
— Given game; when execute power; then assert state of game
 To

— Given strategy; when execute power; then assert proper
mutator method of ‘mutable game’ role is called with the
proper parameters

assertThat(spy.lastCall, is(value: "deltaHeroHealth(PEDDERSEN,-2)"));
}

/v Benefit/Liability

AARHUS UNIVERSITET
 Liabilities
— You have to code the Spy
* (Mock frameworks like ‘Mockito’ may reduce that effort)

 Benefits
— Much more evident tests

public void shouldExecuteBrownRiceEffect() {

Card card = theDeck.get(8);
assertThat(card.getMame(), is(GameConstants.BROWN_RICE_CARD)];

card.getEffect() .executeEffect(spy, droplndex @);

assertThat(spy.lastCall, is(value: "deltaHeroHealth({PEDDERSEN,-1)"]);
}

CS@AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET
« EtaStone CardEffects
— The core of HearthStone
Name Attributes | Effect
Brown Rice (1,1, 1) Deal 1 damage to opponent hero.
Tomato Salad | (2, 2, 2) Add +1 attack to random minion.
Poke Bowl (3,2, 3) Restore +2 health to hero.
Noodle Soup | (4,5, 3) Draw a card.
Spring Rolls (5,3, 5) Destroy a random opponent minion.
Baked Salmon | (5,7, 6) Add +2 attack to random opponent minion.

* Really nasty to do Integration Testing

— Lots of code to bring card to the field, and test
their effects &

CS@AU Henrik Baerbak Christensen

St o s

/v Outlook

AARHUS UNIVERSITET
« EtaStone

— Unit testing is much easier

» Given poke bowl, When executing effect, Then game’s
‘changeHealthOfHero(...)’ is called with parameter +2 on
my own hero

Name Attributes | Effect

Brown Rice (1,1, 1) Deal 1 damage to opponent hero.

Tomato Salad | (2,2, 2) Add +1 attack to random minion.

Poke Bowl (3,2,3) Restore +2 health to hero.

Noodle Soup | (4,5, 3) Draw a card.

Spring Rolls (5,3, 5) Destroy a random opponent minion.

Baked Salmon | (5,7, 6) Add +2 attack to random opponent minion.

CS@AU Henrik Baerbak Christensen 12

