
Software Engineering

and Architecture

Test Spy Revisited

Unit Testing Strategies

Problem Statement

• Some strategies can be Unit Tested

– My ‘ManaProductionStrategy’ does not depend upon any

HotStone abstraction

• So, I can unit test it:

in isolation from other

objects…

CS@AU Henrik Bærbak Christensen 2

Problem Statement

• GammaStone was a problem – no Unit Testing possible

of the Hero Power Strategy

– It modifies the game object ala reducing health of hero by two…

• … which of course require us to have a game object in place

• Ala an integration test case like

– GIVEN a GammaStone Game

– WHEN I ask Thai Hero (Findus) to ‘use your power’

– THEN game.getHero().getHealth() is reduced by 2

• Integration test because

– Both Game and Hero Power Strategy (and Hero?) involved…

CS@AU Henrik Bærbak Christensen 3

Analysis

• Seen from the perspective of the hero power strategy

– The usePower() method mutates a Depended Upon Unit (DOU)

• Spies serve commands (mutators) by the UUT

• Spies are recorders of interaction

– So, JUnit test can later query the spy about “what happened?”

CS@AU Henrik Bærbak Christensen 4

What was sent to the DOU?

command

Analysis

• A Double/Spy is a replacement of the original DOU

– Which requires that the DOU is defined by an interface/role

• Now our private interface for Game allows us to do

unit testing! Replace MutableGame by a spy

CS@AU Henrik Bærbak Christensen 5

Record the call

changeHealth

usePower MutableGame

My Code

• A Unit testing of Thai Chef, by using a Spy

CS@AU Henrik Bærbak Christensen 6

My Spy

• Is a simple ‘record last method call’

CS@AU Henrik Bærbak Christensen 7

Discussion

• Note how all these techniques combine to make it

possible

– Interface Segregation Principle + Role/Private interface

• Game object can play both an “outward looking” and “inward looking”

role

– Game interface: outward looking what outsiders can do

– MutableGame: inward looing what strategies can do

– Program to an interface

• MutableGame is an interface, and can be played by another object

than the real implementation itself

– Test Spy

• The spy plays the MutableGame role, to test the hero power

algorithm

CS@AU Henrik Bærbak Christensen 8

Discussion

• Unit Testing changes the GWT ‘mind set’

• From

– Given game; when execute power; then assert state of game

• To

– Given strategy; when execute power; then assert proper

mutator method of ‘mutable game’ role is called with the

proper parameters

CS@AU Henrik Bærbak Christensen 9

Benefit/Liability

• Liabilities

– You have to code the Spy

• (Mock frameworks like ‘Mockito’ may reduce that effort)

• Benefits

– Much more evident tests

– Much shorter tests

CS@AU Henrik Bærbak Christensen 10

Outlook

• EtaStone CardEffects

– The core of HearthStone

• Really nasty to do Integration Testing

– Lots of code to bring card to the field, and test

their effects 

CS@AU Henrik Bærbak Christensen 11

Outlook

• EtaStone

– Unit testing is much easier

• Given poke bowl, When executing effect, Then game’s

‘changeHealthOfHero(…)’ is called with parameter +2 on

my own hero

CS@AU Henrik Bærbak Christensen 12

